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An expedient protocol of aralkylation of Baylis–Hillman adducts has been developed. This method used
Pd-catalyzed decarboxylative protonation strategy to the allyl ester precursor that was made from the
Baylis–Hillman adduct and allyl phenylacetate.
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Introduction of aryl group at the primary position of the
Baylis–Hillman adduct has been carried out in a variety of
ways.1–3 Friedel–Crafts reaction of Baylis–Hillman alcohol, ace-
tate, and aza-Baylis–Hillman adduct with arenes has been used
most frequently.2 Recently, Pd-catalyzed cross-coupling protocol
was reported.3 However, an efficient method for the introduc-
tion of arylmethyl group at the Baylis–Hillman adducts has
not been reported although the product a-substituted acrylate
ester has been used extensively in organic synthesis.4 Very re-
cently, Roy and co-workers reported on the preparation of these
compounds via Cp2TiCl-mediated radical-induced addition
protocol.4

After Tsuji’s brilliant contributions, Pd-mediated decarboxyla-
tive protonation and allylation have been used widely in organic
synthesis.5–8 Recently, we also reported on Pd-catalyzed decarb-
oxylative protonation protocol for the synthesis of 1,5-dicarbonyl
compounds from Baylis–Hillman adducts.7 During the project we
imagined that we could introduce arylmethyl moiety at the pri-
mary position of the Baylis–Hillman adduct and could prepare
homologous series of the Friedel–Crafts products by using the
Pd-catalyzed decarboxylative protonation strategy as in Scheme
1.

As is often the case, the corresponding p-allylpalladium car-
boxylate intermediate cannot lose carbon dioxide without an
electron-accommodating group.5–8 Many functional groups have
been reported as the electron-accommodating moieties including
ester, nitrile, and acetyl groups.5–8 Recently, Waetzig and Tunge
ll rights reserved.

: +82 62 530 3389.
used electron-deficient aryl and heterocyclic moieties as the
electron-accommodating group in their Pd-assisted decarboxyla-
tive allylation.9 Thus, we selected para-nitro derivative 3a as the
model substrate and examined the whole process: introduction
of allyl p-nitrophenylacetate (2a) at the primary position of the
bromide of Baylis–Hillman adduct 1a to make 3a, and the fol-
lowing Pd-catalyzed decarboxylative protonation to desired com-
pound 4a (Table 1). The plausible mechanism for the Pd-
catalyzed decarboxylative protonation is depicted in Scheme 1
(vide supra).

Introduction of 2a was carried out using K2CO3/CH3CN at room
temperature in good yield (88%).10 With compound 3a we exam-
ined the conditions of decarboxylative protonation as shown in Ta-
ble 1. The formation of compounds 5a and 6a was also observed
during the reaction besides that of 4a.10 As shown, variable ratios
of compounds 4a–6a were observed, and were dependent on the
ratio/amounts of Et3N/HCOOH and reaction temperature. Best re-
sult was observed with 1.1 equiv of Et3N and 1.1 equiv of HCOOH
conditions in refluxing CH3CN (entry 1). The reaction at room tem-
perature produced carboxylic acid 6a as the major compound (en-
try 4), and excess amounts of Et3N/HCOOH increased the amounts
of amino compound 5a (entries 2 and 3). The use of ammonium
formate showed similar results (entry 5).

Encouraged by the successful results, we prepared various start-
ing materials 3a–g by the reaction of allyl arylacetates 2a–d and
the bromide of Baylis–Hillman adducts 1a–c in good yields (52–
91%). In some cases when the use of K2CO3 is less effective, we used
Cs2CO3 or TBAF (n-tetrabutylammonium fluoride, THF solution) as
in entries 5–7. The next Pd-catalyzed decarboxylative protonation
reactions were carried out under the optimized conditions (entry 1
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Entry Conditions Products (%)

1 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (1.1 equiv), HCOOH (1.1 equiv), CH3CN, reflux, 2 h 4a (90), no 5a
2 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (2.4 equiv), HCOOH (2.4 equiv), CH3CN, reflux, 3 h 4a (68), 5a (18)
3 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (3.0 equiv), HCOOH (6.0 equiv), CH3CN, reflux, 24 h 4a (13), 5a (51)
4 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (2.0 equiv), HCOOH (2.0 equiv), CH3CN, rt, 5 h 4a (12), 6a (82)
5 Pd(OAc)2 (5 mol %), PPh3 (10 mol %), HCOONH4 (1.1 equiv), CH3CN, reflux, 4 h 4a (79), 5a (5)
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Table 2
Aralkylation of Baylis–Hillman adducts at the primary position
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1a: EWG = COOMe
1b: EWG = COMe
1c: EWG = CN

2a: Ar = 4-NO2C6H4, R = H
2b: Ar = 4-NO2C6H4, R = Me
2c: Ar = 2-NO2C6H4, R = H
2d: Ar = 4-MeSO2C6H4, R = H

For compounds 3 and 4
a: EWG = COOMe, Ar = 4-NO2C6H4, R = H
b: EWG = COOMe, Ar = 4-NO2C6H4, R = Me
c: EWG = COOMe, Ar = 2-NO2C6H4, R = H
d: EWG = COMe, Ar = 4-NO2C6H4, R = H
e: EWG = COMe, Ar = 2-NO2C6H4, R = H
f: EWG = CN, Ar = 4-NO2C6H4, R = H
g: EWG = COOMe, Ar = 4-MeSO2C6H4, R = H

+

K2CO3
(Cs2CO3 or TBAF)

Pd(OAc)2 / PPh3
Et3N / HCOOH

CH3CN, reflux

4321

Entry Conditions Compound 3 (%) Conditionsa (h) Compound 4 (%)

1 K2CO3 (1.5 equiv), CH3CN, rt, 5 h 3a (88) 2 4a (90)
2 K2CO3 (1.5 equiv), CH3CN, 50 �C, 24 h 3b (62) 2 4b (88)
3 K2CO3 (1.5 equiv), CH3CN, rt, 12 h 3c (91) 12 4c (96)
4 K2CO3 (1.5 equiv), CH3CN, rt, 7 h 3d (60) 3 4d (94)
5 Cs2CO3 (2.0 equiv), CH3CN, rt, 4 h 3e (74) 4 4e (96)
6 TBAF (2.0 equiv), THF, rt, 30 min 3f (52)b,c 2 4f (88)c

7 Cs2CO3 (2.0 equiv), CH3CN, rt, 12 h 3g (74) 3d 4g (80)

a Conditions: Pd(OAc)2 (5 mol %), PPh3 (10 mol %), Et3N (1.1 equiv), HCOOH (1.1 equiv), CH3CN, reflux.
b Appreciable amounts of 1:2 adduct of 2 and 1 were formed (40%) as a side product.
c The stereochemistry is Z.
d DMF was used as solvent (80 �C).
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in Table 1). Good to excellent yields of products 4a–g were ob-
tained, and the results are summarized in Table 2.

The reaction of methanesulfonyl derivative 3g did not produce
4g under the same conditions in CH3CN (24 h, reflux). Instead of
4g, we isolated acid compound 6g in 56% (Scheme 2). However,
we could prepare 4g in good yield (80%) by exchanging the solvent
CH3CN to DMF (entry 7 in Table 2 and Scheme 2). Due to the rela-
tively weak electron-accommodating ability of methanesulfonyl
group than the nitro group of compounds 3a–f, the reaction was
sluggish in CH3CN. However, decarboxylation was effective in
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more polar solvent DMF, fortunately. The reaction of p-chloro
derivative 3h produced the corresponding carboxylic acid com-
pound 6h (78%). In this case, decarboxylation was impossible due
to lack of p-electron-accommodating substituent even in DMF sol-
vent under very harsh conditions (reflux, 24 h) as shown in Scheme
2. As expected, the reaction of ethyl ester 3i did not produce any
trace amounts of product 4a under the same conditions (Scheme
3). We isolated amino compound 7 in 42% after 20 h.

As a next entry, we examined the feasibility for the introduction
of arylmethyl moiety at the secondary position of the Baylis–Hill-
man adduct as shown in Scheme 4. Required starting material 3j
was synthesized using DABCO salt concept11 from the acetate 1d
in 88% yield as a diastereomeric mixture (2:1). The next Pd-medi-
ated decarboxylative protonation was carried out under the same
conditions and we obtained 4j in excellent yield (97%). However,
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during the preparation of compound 3k from the reaction of 1a
and 2e, inseparable mixture of primary 3k and secondary 3l was
obtained (88%, 1:1 mixture) as shown in Scheme 5. Thus, we used
the mixture without separation in the next decarboxylative pro-
tonation reaction and obtained compounds 4k (38%) and 4l (39%).

As the last manipulation, we examined Pd-catalyzed decarboxy-
lative allylation with compound 3a as shown in Scheme 6 under
the conditions of Pd(OAc)2/PPh3 in dry toluene,5,8,9 and obtained
product 8 (75%) as the major compound together with small
amounts of 4a (19%). The compound 8 could also be prepared from
the Pd-catalyzed decarboxylative protonation reaction of com-
pound 9 that was synthesized by the allylation of 3a with allyl
bromide.

In summary, we disclosed an efficient aralkylation protocol at
either primary or secondary position of the Baylis–Hillman adducts
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via the novel Pd-mediated decarboxylative protonation protocol as
the key step.
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